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Searching in small-world networks
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We study the average time it takes to find a desired node in the Watts-Strogatz family of networks. We
consider the case when thelook-up timecan be neglected and when it is important, where the look-up time is
the time needed to choose one among all the neighboring nodes of a node at each step in the search. We show
that in both cases, the search time is minimum in the small-world regime, when an appropriate distance
between the nodes is defined. Through an analytical model, we show that the search time scales asN1/D(D11)

for small-world networks, whereN is the number of nodes andD is the dimension of the underlying lattice.
This model is shown to be in agreement with numerical simulations.
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In recent years, the study of small-world networks h
attracted much interest in many areas. Such networks
characterized by having a structure of links which is in b
tween a completely regular and a totally random topology
network is characterized by the number of nodesN and the
average number of links per nodek @1#. One of the most
important quantities for a network is itslength, which is the
average number of steps required to go from one node o
network to another, following the links. It is known@2# that
for a givenN and k, a random network~i.e., whose links
connect randomly chosen pairs of nodes! has a lengthL
which is small and scales logarithmically withN. Regular
networks, on the other hand, have largeL, andL increases
algebraically with the sizeN of the network. Watts and Stro
gatz @3# have shown that small-world networks, while pr
senting a structure very close to the regular ones, h
lengths almost as small as those of equivalent random
works. The small-world phenomenon is extremely importa
because many natural and artificial networks are found to
small worlds. Some examples are sociological netwo
@3–5#, power transmission networks@3#, biological networks
@3#, the Internet and the World-Wide Web@6#, the structure of
language@7#, and many others. For reviews, see Refs.@8,9#.

In this paper, we investigate the problem ofsearchesin
networks, which is of great relevance for many systems
particular for communication networks. Previous works
this subject have centered on scale-free networks@10#, lat-
tices with long-range links connected according to
distance-dependent probability distribution@11#, congestion-
sensitive networks@12#, models of the World-Wide Web
@13#, and social networks@5,14#. In these works, it was found
that the topology of the network may have a large effect
the typical search time. Here we use the Watts-Strogatz
work family @3# to study the search time, and how it is a
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fected as the network’s topology changes smoothly fr
regular to random. To be more specific, if we start at
initial nodeas of the network, how long does it take to get
a looked-for nodeaf , by jumping from node to node throug
the network’s links? The answer depends on how each n
is chosen from the previous one. This in turn depends
what knowledge is available about the network’s structu
We shall focus on networks on which a distance meas
d(a,b) is defined for pairs of nodes (a,b), which indicates
how ‘‘close’’ the nodesa andb are.d contains the available
knowledge about the network. We assume that closer no
are more likely to be linked. For instance, in the case o
packet being routed through the Internet, one is searching
a specific IP address, andd(a,b) would be some suitable
measure of how close the two IP addressesa and b are.
During the search process, one usually has only local in
mation to decide the next step: if the current node in
search isai , we assume that all it is known is the neighbo
hoodG(ai) of ai , which is the set of all nodesai is linked
to. In our model, the next nodeai 11 in the search is chose
by taking fromG(ai) the node which is the closest to th
looked-for nodeaf @15#. This procedure models how searc
works in many real situations. In the case of the IP addr
search mentioned above, at each router the packet goes
the next available router whose IP address is closest to
desired one. The same process can also be used to m
other searches, such as the classic letter-sending experi
by Milgram @4#, subject search in the World-Wide Web, an
possibly, retrieval of information in associative memories

For concreteness, we first consider the Watts-Strogatz
network@3# to study how the transition of the network from
regular to random affects the average search time. In pr
ous works it was assumed that the time it takes to look
each neighbor of the present node~we call it the look-up
time! is negligible compared to the time it takes to jump
the next node. In some real situations, however, the look
time can be of the same order as the hopping time, such
©2003 The American Physical Society06-1
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for instance, in a data structure used by a computer prog
In this paper, the latter case is considered for the first time
the best of our knowledge. We denote the correspond
search time byLs

LUT . The usual definition of search time
which is the average number of steps it takes to reac
desired node, is denoted byLs . The search procedure is a
described above, and the distance functiond is taken to be
the distance along the ring between the two nodes. In
ticular, we are interested in howLs andLs

LUT behave in the
small-world region situated in between the regular and r
dom limits. It is important to notice thatLs ~and alsoLs

LUT)
is different from the lengthL. They coincide only if the bes
path connecting any two nodes were always chosen in
search. However, since at each point in the search we h
only local information, we do not know beforehand what t
best path is. Therefore, we haveLs>L. We find thatLs
reaches a minimum in the small-world region. The reaso
that for the regular network, due to the absence of long-ra
links, L is large, andLs is also large, sinceLs>L. In the
random limit, on the other hand, since the links connect r
domly chosen nodes, the distanced is no longer useful in
determining how close we are to the target node, and
search will jump from node to node in a random way, taki
a long time to find the target node. Therefore, the search
be fastest for networks whose structures are in between r
lar and random; in other words, for small-world network
Ls

LUT also attains its minimum in the small-world regio
This is in sharp contrast to the behavior of the lengthL,
which is minimum in the random limit. A very importan
issue is howLs andLs

LUT scale with the number of nodesN.
We develop an analytical model to predict this, and we sh
that bothLs andLs

LUT scale withN asLs;N1/2 in the small-
world region. This means that in small-world networks, t
search time increases slowly as the size grows, as oppos
regular and random networks, where it increases line
with N. It is especially important thatLs

LUT also scales asN1/2

in the small-world regime, since it is well known that th
search time always scales linearly withN if no information
on the structure of the network is available. In search me
ods such as the one used in Ref.@10#, which operate without
information on the network’s structure, even thoughLs may
be dramatically decreased,Ls

LUT always grows linearly with
N, whereas it only increases asN1/2 in our case, because o
the knowledge embodied in the distance functiond about the
network.

To illustrate our results, we now focus on the Wat
Strogatz ring network, which is built from a one-dimension
periodic lattice, whereN nodes are placed on a ring and ea
node is linked to its 2k nearest neighbors (k neighbors on
each side!. Then each link is rewired randomly with prob
ability b, with 0,b,1 parametrizing the network.b50
corresponds to the original ring network, which is com
pletely regular, andb51 gives a random network. By
changingb, we move smoothly from regular to random ne
works. We assume asparsenetwork, withk!N.

We first investigate howLs changes asb goes from 0 to
1. The behavior ofLs

LUT is studied below.Ls is evaluated by
applying the search algorithm for pairs of randomly chos
03610
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initial and target points. We thus getLs as a function of the
parameterb, as shown in Fig. 1. In the same figure we al
show L(b) for comparison. We see thatLs drops sharply
from the value of the regular network, asb is increased from
0. It reaches a minimum level at small values of the rando
ness parameter, where it stays practically unchanged f
wide interval ofb. It then rises again, asb approaches 1, the
random limit. This behavior can be understood as follow
For b50, the search proceeds from the initial node by jum
ing to the nearest neighbor node closest toaf , which is at a
distancek away, and so on repeatedly. It is easily seen tha
this case,Ls;N/k. Fork!N, Ls(0) is thus very large. Asb
increases, however, some links are rewired, and long-ra
links appear in the network, which can play the role of sho
cuts in the search process. Ifb is only slightly larger than 0,
most nodes are still linked only to their nearest neighbo
and the search proceeds for some time by jumping to nea
neighbors, as before. But eventually it gets to a node that
a long-range rewired link, through which we may get clos
to af then by jumping to thek-nearest neighbor. Therefore
for b.0, but not too large,Ls decreases, due to the presen
of long-range links in the network. We will show analytical
thatLs scales asN1/2 in this case. Asb increases further and
approaches 1, the links to nearest neighbors are almos
rewired into long-range links. Since the rewiring is rando
nodes are linked in a fashion that is uncorrelated with th
position in the ring. As a result, the distance functiond no
longer gives useful information for the search. Forb51, a
search can be approximated as a random sequence of n
and it can readily be shown thatLs also scales linearly with
N, such as in the regular case.

Although we have used the Watts-Strogatz ring netw
for illustration, it is clear that the same qualitative reason
can be applied to any network where a meaningful dista
function can be defined, and where closer nodes are m
likely to be connected. This assumption holds for many r

FIG. 1. Search timeLs as a function of the randomness param
eterb ~full line!, for N52000 andk510. Each point correspond
to an average over 1000 pairs of nodes, for 20 independent rea
tions of the network. For comparison, the lengthL is also plotted
~dashed line!. The inset showsLs

LUT as a function ofb with our
method~thick line! and the breath-first method~thin line!.
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networks. In general, search in small-world networks is
pected to be faster than in regular or random networks.

We now present an analytical model to predict howLs
scales withN, k, andb, in the small-world region. We as
sumeN@1, k!N. We also assume 0,b!1, so that most
links connect nearest neighbors, and the density of lo
range links is low. We consider, however, that the total nu
ber of long-range linksM5Nkb is large,M@1. To simplify
the analysis, we take the ring on which the nodes are pla
to have unit circumference, and each node is described b
positionx in the circle, with 0<x,1. SinceN is large, we
can considerx to be a continuous variable. We takex50 to
correspond to the target nodeaf , andx is measured counter
clockwise~see Fig. 2!.

Suppose the search starts at a nodeas , corresponding to
x5x0. Since the density of long-range links is small, it
likely that the search proceeds by jumping to thekth-nearest
neighbors a few times before finding a shortcut. This par
the search can be represented as a continuous segment
circle, of sizeDx0. SinceM@1, we haveDx0!1 on aver-
age. At some point, the search finds a shortcut, and jump
x1, and then again goes a distanceDx1 by jumping to thekth
nearest neighbors, finds another shortcut, and so on~see Fig.
2!. In this analysis, we are only concerned about thedistance
from x to the origin 0, where the target node is. This allo
us to use only half of the circle 0<x<1/2, and consider
points on the other half to be reflected by the diame
through the origin, as shown in Fig. 2. Thus, the search
be represented as a sequence of pieces on the segmS
given by 0<x<1/2, which represents directly the distance
the target node.

Let us first consider the jump fromxi2Dxi to xi 11. Since
a long-range link is random, it may be connected with a
other node with uniform probability. To work as a shortc
for the search, the link must be connected to a node close
af than the node corresponding toxi2Dxi . Therefore,xi 11
has a uniform probability distribution on 0<x,xi2Dxi .
We use the average forxi 11, and neglect the termDxi /2 as
being much smaller than the size of the jump. We then h
xi 11'xi /2. So on average,x is halved at each shortcut. Sinc
x051/4, on average, the expected value forxi is

FIG. 2. ~a! Illustration of the search on the Watts-Strogatz n
work. At x02Dx0, the first shortcut is found, linking tox18 , which
can be considered to be reflected through the horizontal axis, ox1

~see text!. ~b! shows a possible search in a small network, and~c!
shows the least path connecting the same pair of nodes. This e
plifies the difference betweenL andLs .
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wherexi is the distance from the target after thei th shortcut
found. The search ends for a valuen such thatxn gets close
enough to the origin, so that

Dxn>xn . ~2!

When this condition is satisfied, the search reachesx50,
and finds the target node.

To calculateDxi , we start by noticing that the probabilit
of finding a long-range link on a piecedx!1 of the segment
L is proportional to the number of shortcutsM and todx.
However, not all long-range links help the search: to do
they must link to a node with coordinate smaller than t
current node’s coordinatex. Since the rewired links are con
nected according to a uniform probability distribution on t
circle, the probability that a long-range linkis a shortcut for
the search is proportional to the distancex to the target node.
Finally, since most of the search is done in jumps of sizk
~except at shortcuts and at nodes whose link to thekth neigh-
bor has been rewired!, the probability of finding a shortcut in
the lengthdx of S is inversely proportional tok. From the
above, the probabilitydP of finding a shortcut in a lengthdx
of S is

dP52CNbxudxu5CNbudx2u, ~3!

whereC.0 is a constant and we useM5Nkb. This expres-
sion is valid for an infinitesimal displacementdx. For a finite
displacement starting atx and ending atxb , with xb,x, we
get from Eq.~3! the probabilityP of finding a shortcut:

P~x,xb!512exp@2CNb~x22xb
2!#. ~4!

From this equation, we can roughly estimate the aver
value xb at which a shortcut will be found by putting
CNb(x22xb

2)51, which yields to first orderxb'x2Dx,
with Dx51/2CNbx, where we assumeNb@1. Substituting
Eq. ~1! into this expression, we get the following forDxi :

Dxi52i 11/CNb. ~5!

Now, by substituting Eqs.~1! and~5! into Eq. ~2!, we get an
expression of the total numbern of shortcuts crossed in th
search:

22n5CNb/8. ~6!

The total lengthl s crossed in the ring throughout the sear
is thus given byl s5( i 50

n Dxi . Using Eq.~5! and usingx0

51/4 as before, we get

l s5
2

CNb (
i 50

n

2i'
4

CNb
2n, ~7!

where we assumen@1. Substituting Eq.~6! into this expres-
sion, we getl s5K(Nb)21/2, whereK5(2C)21/2 is a con-
stant.l s gives the search length on the unit circle. We no
need the search timeLs in terms of the number of nodes
They are related byLs5Nls /k. So our final result is

-

m-
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Ls5KS N

k2b
D 1/2

. ~8!

Equation~8! predicts thatLs scales asN1/2. This means
that the average search time for small-world networks
creases very slowly with the network size, in comparis
with regular and random networks, and also with bli
search methods. To verify this scaling law, we calculateLs
for networks with several different values ofN. The result for
k510 andb50.02 is shown in Fig. 3. We see that the sc
ing Ls;N1/2 is indeed confirmed by the simulation. Th
same is true for other values ofk and b, provided thatk
!N, 0,b!1, andNb@1. The scalings with respect tok
andb predicted by Eq.~8! were also verified numerically.

From the point of view of design, small worlds are th
best choice for searching in large networks, and they bec
increasingly better as size increases. Indeed, the r
Ls

sw/Ls
reg,rand between the search times for small-world a

regular or random networks~or blind search methods! scales
with N21/2.

Ls measures the search time if the process of looking
each neighbor at each step takes a much shorter time
hopping from one node to the next. In some cases, howe
we have to consider the ‘‘look-up time’’ in the calculation
the search time. We denote the corresponding search tim
Ls

LUT. We now calculateLs
LUT , assuming that the look-up

time is the same as the ‘‘hopping time.’’ Since the number
links at each node is independent of its distance from
target node,Ls

LUT is just equal toLs multiplied by the aver-
age number of links per node 2k @16#. From Eq.~8! then we
have

Ls
LUT'2K~N/b!1/2. ~9!

This means thatLs
LUT also scales with the size asN1/2, and

small-world networks are also efficient for searches wh
the look-up time cannot be neglected. This is not true if th
is no information about the network’s structure. To direc
verify this, we calculated numericallyLs

LUT(b) for our

FIG. 3. Square of the search timeLs as a function of the net-
work sizeN, for b50.02 andk510. Each point is an average ove
1000 pairs of nodes, for 20 different realizations of the network
03610
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search method, and for the breath-first method, which i
‘‘blind’’ method. The results are shown in the inset of Fig.
We see thatLs

LUT has indeed a minimum in the small-worl
region with our method, whereas it stays constant for
breath-first method. Although in Ref.@10# the authors show
that in scale-free networksLs depends logarithmically onN,
we emphasize that if the look-up times are considered,
search time scales linearly withN. This happens becaus
even though one goes through only a few nodes to reach
target, these nodes are the ones that are highly conne
and there are more links to look up than average.

We notice that, from Fig. 1, it is clear that bothLs and
Ls

LUT stay near the minimum for a wide range ofb. This
means that our search method has a good performance
wide range of network topologies.

In the model presented above, we considered the Wa
Strogatz ring network. However, it is clear that the search
general small-world networks will also be sped up. In p
ticular, we have extended our theory to higher-dimensio
networks of the Watts-Strogatz family. We found that t
search time for bothLs andLs

LUT in a D-dimensional small-
world network scales asN1/D(D11), which should be com-
pared withN1/D for regular networks, and linear scaling fo
random ones. ForD52 the scaling isN21/6, which is poten-
tially relevant to understand the shortness of the letters’ pa
in the classical Milgram experiment@4,5#. We observe that
the corresponding scaling in the Kleinberg model isN21/3

@11#.
Summarizing, we have shown that small-world networ

optimize search times. We have also predicted analytic
for small worlds how the average search time scales with
various quantities characterizing the network. For netwo
embedded in aD-dimensional space, our mean-field theo
predicts that the search time scales asN1/D(D11), valid also
for the cases in which the look-up time cannot be neglec
In particular, for the Watts-Strogatz one-dimensional mod
the search time scales asN1/2. These predictions were con
firmed by the direct simulation of the search. Although w
have used a particular family of networks in the analysis,
general networks with small-world topologies minimiz
search times. Since search is a problem of extreme im
tance for so many natural and artificial networks, we exp
our results to be relevant for many areas of knowledge.

We conclude with some thoughts on the meaning of
results for learning. From the standpoint of retrieval of info
mation in an associative memory, the small-world prope
of the network represents a maximization of efficiency b
cause similar pieces of information are stored togeth
which makes searching by association possible, and bec
even very different pieces of information are never separa
by more than a few links, which guarantees a fast search
we assume that the human memory is associative, we
speculate that the dendritic wiring in learning processes
mainly driven by the minimization of the search time in th
underlying network. This in turn may be related to the top
ogy of the neural network itself, which has been argued to
a homogeneous small-world network@17#.

This work was supported by FAPESP and CNPq.
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