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Searching in small-world networks
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We study the average time it takes to find a desired node in the Watts-Strogatz family of networks. We
consider the case when tl@k-up timecan be neglected and when it is important, where the look-up time is
the time needed to choose one among all the neighboring nodes of a node at each step in the search. We show
that in both cases, the search time is minimum in the small-world regime, when an appropriate distance
between the nodes is defined. Through an analytical model, we show that the search time 44858
for small-world networks, wherdl is the number of nodes ard is the dimension of the underlying lattice.
This model is shown to be in agreement with numerical simulations.
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In recent years, the study of small-world networks hasfected as the network’s topology changes smoothly from
attracted much interest in many areas. Such networks amegular to random. To be more specific, if we start at an
characterized by having a structure of links which is in be-initial nodeag of the network, how long does it take to get to
tween a completely regular and a totally random topology. Aa looked-for node;, by jumping from node to node through
network is characterized by the number of no8ieand the the network’s links? The answer depends on how each node
average number of links per node[1]. One of the most is chosen from the previous one. This in turn depends on
important quantities for a network is itsngth which is the  what knowledge is available about the network’s structure.
average number of steps required to go from one node of thé/e shall focus on networks on which a distance measure
network to another, following the links. It is know&] that  d(a,b) is defined for pairs of nodesa(b), which indicates
for a givenN and x, a random networKi.e., whose links how “close” the nodesa andb are.d contains the available
connect randomly chosen pairs of nodéms a lengthL knowledge about the network. We assume that closer nodes
which is small and scales logarithmically with. Regular are more likely to be linked. For instance, in the case of a
networks, on the other hand, have lalgeandL increases packet being routed through the Internet, one is searching for
algebraically with the siz&l of the network. Watts and Stro- a specific IP address, ard{a,b) would be some suitable
gatz[3] have shown that small-world networks, while pre- measure of how close the two IP addresseand b are.
senting a structure very close to the regular ones, havBuring the search process, one usually has only local infor-
lengths almost as small as those of equivalent random netnation to decide the next step: if the current node in the
works. The small-world phenomenon is extremely importantsearch isa;, we assume that all it is known is the neighbor-
because many natural and artificial networks are found to beoodI'(a;) of a;, which is the set of all nodes; is linked
small worlds. Some examples are sociological networkso. In our model, the next nod® . ; in the search is chosen
[3-5], power transmission network8], biological networks by taking fromI'(a;) the node which is the closest to the
[3], the Internet and the World-Wide Wg6], the structure of  looked-for nodea; [15]. This procedure models how search
languagd 7], and many others. For reviews, see RE89].  works in many real situations. In the case of the IP address

In this paper, we investigate the problems#farchesn  search mentioned above, at each router the packet goes on to
networks, which is of great relevance for many systems, irthe next available router whose IP address is closest to the
particular for communication networks. Previous works ondesired one. The same process can also be used to model
this subject have centered on scale-free netwpiks, lat-  other searches, such as the classic letter-sending experiment
tices with long-range links connected according to aby Milgram[4], subject search in the World-Wide Web, and,
distance-dependent probability distributipi], congestion-  possibly, retrieval of information in associative memories.
sensitive networkg12], models of the World-Wide Web For concreteness, we first consider the Watts-Strogatz ring
[13], and social networkgb,14]. In these works, it was found network[3] to study how the transition of the network from
that the topology of the network may have a large effect orregular to random affects the average search time. In previ-
the typical search time. Here we use the Watts-Strogatz netus works it was assumed that the time it takes to look at
work family [3] to study the search time, and how it is af- each neighbor of the present nofee call it the look-up

time) is negligible compared to the time it takes to jump to
the next node. In some real situations, however, the look-up
*Electronic address: amoura@if.usp.br time can be of the same order as the hopping time, such as,
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for instance, in a data structure used by a computer progranr 120+

In this paper, the latter case is considered for the first time, tc 1 o L,
the best of our knowledge. We denote the corresponding 100+ L™
search time byLs"". The usual definition of search time, 1 L 500

which is the average number of steps it takes to reach ¢ 804 =0

S

desired node, is denoted ly. The search procedure is as o) SR e
described above, and the distance functibis taken to be » 60 B
the distance along the ring between the two nodes. In par'a

404

no. o

ticular, we are interested in holy andL:"" behave in the
small-world region situated in between the regular and ran- 1

dom limits. It is important to notice that, (and alsoL"T) 20

is different from the length.. They coincide only if the best 1

path connecting any two nodes were always chosen in the 0 ' . g T " T ' . ' 1
search. However, since at each point in the search we hav
only local information, we do not know beforehand what the B

best path is. Therefore, we havg=L. We find thatL . .

reaches a minimum in the small-world region. The reason is FIG- 1. Search timé as a function of the randomness param-
that for the regular network, due to the absence of long-ranggter8 (full line), for N=2000 andk=10. Each point corresponds
links, L is large, andL, is also large, sinc&=L. In the t_o an average over 1000 pairs of _nodes, for 20 mdependent realiza-
random limit, on the other hand, since the links connect rantions of the network. For companson, the lengttis also plotted
domly chosen nodes, the distangds no longer useful in  (02shed ling The inset showd.; © as a function of with our
determining how close we are to the target node, and threnethod(thlck line) and the breath-first methdthin line).

search will jump from node to node in a random way, taking. _... . .
a long time to find the target node. Therefore, the search wiIE1Itlal and target points. We thus get as a function of the

be fastest for networks whose structures are in between reg aramete, as shown in Fig. 1. In the same figure we also
lar and random; in other words, for small-world networks. how L () for comparison. We see thats drops sharply

LLUT also attains its minimum in the small-world region from the value of_the regular network, Ads increased from
S, i " 0. It reaches a minimum level at small values of the random-
Th'.s IS 1n s_;h_arp contrast to the be_ha_mor of th_e length ness parameter, where it stays practically unchanged for a
Wh'Ch,'S minimum '[‘L}he rand(_)m limit. A very important wide interval of 3. It then rises again, g8 approaches 1, the

issue is howLg andLg~" scale with the number of nodéé

. ! ; random limit. This behavior can be understood as follows.
We develop an analytical model to predict this, and we Sho"‘#orﬁzo, the search proceeds from the initial node by jump-

that bothL; andL¢"" scale withN asLs~N"2in the small-  jng to the nearest neighbor node closesato which is at a
world region. This means that in small-world networks, thegistancek away, and so on repeatedly. It is easily seen that in
search time increases slowly as the size_gr'ows, as opposedt}qs casel.~N/k. Fork<N, L¢(0) is thus very large. A
regular and random networks, WhLeUrTe it increases linearlycreases, however, some links are rewired, and long-range
with N. It is especially important that;"" also scales a8  |inks appear in the network, which can play the role of short-
in the small-world regime, since it is well known that the ¢yts in the search process Afis only slightly larger than 0,
search time always scales linearly withif no information  most nodes are still linked only to their nearest neighbors,
on the structure of the network is available. In search methgnd the search proceeds for some time by jumping to nearest
ods such as the one used in Réf0], which operate without neighbors, as before. But eventually it gets to a node that has
information on the network’s structure, even thoughmay 3 long-range rewired link, through which we may get closer
be dramatically decreasetl;"" always grows linearly with o a; then by jumping to thé-nearest neighbor. Therefore,
N, whereas it only increases &8'? in our case, because of for >0, but not too largel,  decreases, due to the presence
the knowledge embodied in the distance functicabout the  of long-range links in the network. We will show analytically
network. thatL, scales adN2in this case. Ag increases further and

To illustrate our results, we now focus on the Watts-approaches 1, the links to nearest neighbors are almost all
Strogatz ring network, which is built from a one-dimensionalrewired into long-range links. Since the rewiring is random,
periodic lattice, wher&l nodes are placed on a ring and eachnodes are linked in a fashion that is uncorrelated with their
node is linked to its R nearest neighborsk(neighbors on  position in the ring. As a result, the distance functibmo
each sidg Then each link is rewired randomly with prob- |onger gives useful information for the search. Bx1, a
ability 8, with 0<B<1 parametrizing the network3=0  search can be approximated as a random sequence of nodes,
corresponds to the original ring network, which is com-and it can readily be shown thht also scales linearly with
pletely regular, andB=1 gives a random network. By N, such as in the regular case.
changingB, we move smoothly from regular to random net-  Although we have used the Watts-Strogatz ring network
works. We assume sparsenetwork, withk<<N. for illustration, it is clear that the same qualitative reasoning

We first investigate hoviL; changes ag goes from 0 to  can be applied to any network where a meaningful distance
1. The behavior of_éUT is studied belowL ¢ is evaluated by function can be defined, and where closer nodes are more
applying the search algorithm for pairs of randomly choserlikely to be connected. This assumption holds for many real
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(a) x (b) x=2""2 1)

wherex; is the distance from the target after tiib shortcut
found. The search ends for a valoesuch thatx,, gets close
enough to the origin, so that

AX =X, (2

A
\
1/ 0 (C) :
When this condition is satisfied, the search reacke®,
Y

% and finds the target node.

X, To calculateAx; , we start by noticing that the probability
of finding a long-range link on a piedx<1 of the segment

L is proportional to the number of shortcu and todx.
However, not all long-range links help the search: to do so,
they must link to a node with coordinate smaller than the
gurrent node’s coordinate Since the rewired links are con-
nected according to a uniform probability distribution on the
circle, the probability that a long-range lingk a shortcut for

networks. In general, search in small-world networks is exN€ séarch is proportional to the distand® the target node.
pected to be faster than in regular or random networks. [ inally, since most of the search is done in jumps of $ize
We now present an analytical model to predict hbw (except atshorthts and at node_g who;e I|_nktd<thene|gh-_
scales withN, k, and 3, in the small-world region. We as- bor has been reww_e}d_the probability of_fmdmg a shortcut in
sumeNs>1, k<N. We also assume<09B<1, so that most the lengthdx of S_|§ mvers-ely.proportlonal t@(. From the
links connect nearest neighbors, and the density of long2P0Ve, the probabilitd P of finding a shortcut in a lengtix

range links is low. We consider, however, that the total numof Sis

ber of long-range link$1 =NKkg is large,M>1. To simplify dP=2CNpBx|dx|=CNg|dx?, (3)
the analysis, we take the ring on which the nodes are placed
to have unit circumference, and each node is described by itghereC>0 is a constant and we usé=NKkp. This expres-
positionx in the circle, with 0<sx<1. SinceN is large, we  sjon is valid for an infinitesimal displacemenix. For a finite
can considex to be a continuous variable. We take0 to  displacement starting atand ending ak,,, with x,<x, we
correspond to the target node, andx is measured counter- get from Eq.(3) the probabilityP of finding a shortcut:
clockwise(see Fig. 2 .

Suppose the search starts at a nage corresponding to P(X,Xp)=1—exg —CNB(X“—xp)]. 4
X=Xq. Since the density of long-range links is small, it is ) ) _
likely that the search proceeds by jumping to Kike-nearest From this equation, we can roughly estimate the average
neighbors a few times before finding a shortcut. This part olalu€ X, at which a shortcut will be found by putting
the search can be represented as a continuous segment in B(X*—x)=1, which yields to first ordex,~x—Ax,
circle, of sizeAx,. SinceM>1, we haveAx,<1 on aver-  With Ax=1/2CNgx, where we assumd3>1. Substituting
age. At some point, the search finds a shortcut, and jumps ted. (1) into this expression, we get the following farx; :
X1, and then again goes a distarite; by jumping to thekth Ax;=21*YCNB (5)
nearest neighbors, finds another shortcut, and seea Fig. ' '
2). In this analysis, we are only concerned aboutdistance Now, by substituting Eqg(1) and (5) into Eq. (2), we get an

from x to the origin 0, where the target node is. This allows g,y ession of the total numberof shortcuts crossed in the
us to use only half of the circle 9x<1/2, and consider gqqccp:

points on the other half to be reflected by the diameter

through the origin, as shown in Fig. 2. Thus, the search can 22"=CNgpI8. (6)

be represented as a sequence of pieces on the se@nent

given by 0<x=1/2, which represents directly the distance to The total length s crossed in the ring throughout the search

FIG. 2. (a) lllustration of the search on the Watts-Strogatz net-
work. At Xo— AXg, the first shortcut is found, linking t®; , which
can be considered to be reflected through the horizontal axis; on
(see text (b) shows a possible search in a small network, éxd
shows the least path connecting the same pair of nodes. This exe
plifies the difference betwednandLg.

the target node. is thus given byl;=3" jAx;. Using Eq.(5) and usingx,
Let us first consider the jump from — Ax; to x;, 4. Since ~ =1/4 as before, we get

a long-range link is random, it may be connected with any n

other node with uniform probability. To work as a shortcut | :L 2 2i%i2n @)

for the search, the link must be connected to a node closer to S CNB b CNB ™’

a; than the node corresponding xp— Ax; . Thereforex;, 1

has a uniform probability distribution on<=Ox<x;—AX;. where we assume>1. Substituting Eq(6) into this expres-
We use the average for ., ;, and neglect the termx;/2 as  sion, we getl;=K(NB) 2, whereK=(2C) *?is a con-
being much smaller than the size of the jump. We then havstant.| 4 gives the search length on the unit circle. We now-
Xi;+1~Xi/2. SO on averageis halved at each shortcut. Since need the search timkg in terms of the number of nodes.
Xo=1/4, on average, the expected value xpis They are related by s=NIs/k. So our final result is
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search method, and for the breath-first method, which is a
“blind” method. The results are shown in the inset of Fig. 1.
We see that - has indeed a minimum in the small-world
region with our method, whereas it stays constant for the
breath-first method. Although in Ref10] the authors show
that in scale-free networls; depends logarithmically oN,
we emphasize that if the look-up times are considered, the
search time scales linearly witN. This happens because
even though one goes through only a few nodes to reach the
target, these nodes are the ones that are highly connected,
and there are more links to look up than average.
We notice that, from Fig. 1, it is clear that both and
LLYT stay near the minimum for a wide range Bf This
0 10000 20000 30000 40000 50000 means that our search method has a good performance for a
N wide range of network topologies.
In the model presented above, we considered the Watts-
Strogatz ring network. However, it is clear that the search in
general small-world networks will also be sped up. In par-
ticular, we have extended our theory to higher-dimensional
12 networks of the Watts-Strogatz family. We found that the
N (g  search time for both; and LT in a D-dimensional small-
kgl world network scales asl*(®*1) which should be com-
pared withN*® for regular networks, and linear scaling for
Equation(8) predicts thatl¢ scales adN'2. This means random ones. Fdb =2 the scaling i\~ 6, which is poten-
that the average search time for small-world networks in4ially relevant to understand the shortness of the letters’ paths
creases very slowly with the network size, in comparisonin the classical Milgram experimef#,5]. We observe that
with regular and random networks, and also with blindthe corresponding scaling in the Kleinberg modeNis'/®
search methods. To verify this scaling law, we calculate [11].
for networks with several different values Nf The result for Summarizing, we have shown that small-world networks
k=10 andB=0.02 is shown in Fig. 3. We see that the scal-optimize search times. We have also predicted analytically
ing L~N¥2 is indeed confirmed by the simulation. The for small worlds how the average search time scales with the
same is true for other values &fand B, provided thatk  various quantities characterizing the network. For networks
<N, 0<pB<1, andNB>1. The scalings with respect fo embedded in @-dimensional space, our mean-field theory
and g predicted by Eq(8) were also verified numerically.  predicts that the search time scalesNd®(®+1) | valid also
From the point of view of design, small worlds are the for the cases in which the look-up time cannot be neglected.
best choice for searching in large networks, and they becomlka particular, for the Watts-Strogatz one-dimensional model,
increasingly better as size increases. Indeed, the ratithe search time scales &8/2 These predictions were con-
LSWLtearand hetween the search times for small-world andfirmed by the direct simulation of the search. Although we
regular or random network®r blind search methogdiscales have used a particular family of networks in the analysis, in
with N~ Y2 general networks with small-world topologies minimize
L measures the search time if the process of looking ugearch times. Since search is a problem of extreme impor-
each neighbor at each step takes a much shorter time th&ance for so many natural and artificial networks, we expect
hopping from one node to the next. In some cases, howevepUr results to be relevant for many areas of knowledge.
we have to consider the “look-up time” in the calculation of ~ We conclude with some thoughts on the meaning of our
the search time. We denote the corresponding search time tigsults for learning. From the standpoint of retrieval of infor-
LLUT. We now calculatel -VT, assuming that the look-up Mation in an associative memory, the small-world property
time is the same as the “hopping time.” Since the number ofof the network represents a maximization of efficiency be-
links at each node is independent of its distance from th&ause similar pieces of information are stored together,
target nodeLéUT is just equal ta_ multiplied by the aver- which make_s search_lng by association possible, and because
age number of links per node&k16]. From Eq.(8) then we ~ €VeN Very different pieces of |_nformat|0n are never separated
have by more than a few links, which guarantees a fast search. If
we assume that the human memory is associative, we may
speculate that the dendritic wiring in learning processes is
mainly driven by the minimization of the search time in the

underlying network. This in turn may be related to the topol-

small-world _networks are also efficient for. searches_wher%gy of the neural network itself, which has been argued to be
the look-up time cannot be neglected. This is not true if there, homogeneous small-world netwdik7].

is no information about the network’s structure. To directly
verify this, we calculated numericaIIyLéUT(,B) for our This work was supported by FAPESP and CNPq.
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FIG. 3. Square of the search tinhg as a function of the net-
work sizeN, for 8=0.02 andk=10. Each point is an average over
1000 pairs of nodes, for 20 different realizations of the network.

S

LEYUT<2K(N/B)Y2. 9)

This means that ;”T also scales with the size &2 and
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